Hybrid Cooperative Agents with Online Reinforcement Learning for Traffic Control
نویسنده
چکیده
This paper presents the application of fuzzy-neuroevolutionary hybrid system with online reinforcement learning for intelligent road traffic management and control. Taking a step away from the conventional traffic control system, the hybrid system presents different methodologies in knowledge acquisition, decisionmaking, learning and goal formulation with the use of a three-layered hierarchical, distributed agent architecture. Distributed and hierarchical fuzzy knowledge acquisition allows different levels of perception to be derived for the same traffic situation by the intelligent agents. Agents’ perceptions can be changed with the use of online reinforcement learning. Initial experimental results show that the implementation of the hybrid agents in the traffic network generally yields better network performance when compared to a network without the agents. The probability of a traffic network evolving into pathological states with oversaturation is also reduced with the implementation of the agents.
منابع مشابه
Cooperative, hybrid agent architecture for real-time traffic signal control
This paper presents a new hybrid, synergistic approach in applying computational intelligence concepts to implement a cooperative, hierarchical, multiagent system for real-time traffic signal control of a complex traffic network. The large-scale traffic signal control problem is divided into various subproblems, and each subproblem is handled by an intelligent agent with fuzzy neural decision-m...
متن کاملHybrid coordination of reinforcement learning-based behaviors for AUV control
This paper proposes a Hybrid Coordination method for Behavior-based Control Architectures. The hybrid method takes in advantages of the robustness and modularity in competitive approaches as well as optimized trajectories in cooperative ones. This paper shows the feasibility of this hybrid method with a 3D-navigation application to an Autonomous Underwater Vehicle (AUV). The behaviors were lear...
متن کاملAn Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources
This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...
متن کاملReal-Time Coordinated Signal Control Using Agents with Online Reinforcement Learning
This paper introduces a multi-agent architecture for real-time coordinated signal control in an urban traffic network. The multi-agent architecture consists of three hierarchical layers of controller agents: intersection, zone and regional controllers. Each controller agent is implemented by applying artificial intelligence concepts namely fuzzy logic, neural network and evolutionary algorithm....
متن کاملUser-based Vehicle Route Guidance in Urban Networks Based on Intelligent Multi Agents Systems and the ANT-Q Algorithm
Guiding vehicles to their destination under dynamic traffic conditions is an important topic in the field of Intelligent Transportation Systems (ITS). Nowadays, many complex systems can be controlled by using multi agent systems. Adaptation with the current condition is an important feature of the agents. In this research, formulation of dynamic guidance for vehicles has been investigated based...
متن کامل